Merging Education, Research and Industry: Teaching Biomedical Engineering Design for Social Impact

Bryan J. Ranger

Instructor, D-Lab
Massachusetts Institute of Technology (MIT)
Cambridge, MA, USA

Contact: branger@mit.edu

Int'l Conference on Instrumentation, Communication, Information Technology, and Biomedical Engineering
“Science and Technology for A Better Life”
Bandung Institute of Technology, Bandung, Indonesia
November 8, 2017
Project-based Learning and Human Centered Design in the Classroom

• Recently, engineering programs have shifted towards encouraging students to develop deeper levels of contextual understanding\(^1\)
 - Challenge students to critically reflect on the broader impacts of their work
 - Develop real-world skills such as persistence, flexibility, and adaptiveness that are necessary for professional success

• An example to promote this in the classroom is through project-based learning (PBL)\(^2\) and human-centered design (HCD) thinking\(^3\) which provide a toolkit for needs assessment, creative ideation, and rapid iterative improvement for solving problems.

• Recommendation that engineering programs make design pedagogy a high priority in future resource allocation decisions\(^4\).

Project-based Learning and Human Centered Design in the Classroom

• An application of PBL and HCD thinking in the classroom has been in the cross-disciplinary field of development engineering, which aims to design appropriate technologies to spur economic and social development in areas with limited resources.5

• HCD thinking as applied to development engineering is unique in its focus on6:
 1. incorporating international development goals
 2. scaling for impact
 3. Integrating novel yet lean technologies

• A pioneer in this field is the MIT D-Lab

D-Lab

Development through discovery, design, and dissemination

Development of appropriate technologies and sustainable solutions within the framework of international development
D-Lab Programs

D-Lab Scale-Ups Fellowships
d-lab.mit.edu/scale-ups/all-fellows

MIT Scaling Development Ventures Conference
sdv.mit.edu

International Development Innovation Network
idin.org

Comprehensive Initiative on Technology Evaluation
cite.mit.edu

D-Lab Youth Outreach
d-lab.mit.edu/youth-outreach
D-Lab Workshop/Makerspace

Love to build things by hand? Welcome to the D-Lab shop!

Never hammered a nail before? Welcome to the D-Lab shop!

- A workshop for international development makers
- Open to all students in D-Lab courses
- Hand tools, power tools, welding, metal fabrication, wood shop

d-lab.mit.edu
D-Lab Undergraduate Research Opportunities (UROP)

- Biomass Fuel & Cookstoves
- Mobile Technology Lab
- Off-grid Energy Solutions, Assessment & Implementation
- D-lab Scale-ups
- Local Innovation & Development
- And many others!

d-lab.mit.edu
D-Lab Courses at MIT

A few examples from Spring 2017:

• Humanitarian Innovation
• D-Lab: Water and Climate Change
• D-Lab: New Economies
• D-Lab: Earth
• D-Lab: Design
• D-Lab: Energy
• **D-Lab: Prosthetics for the Developing World**
• Design for Complex Environmental Problems

d-lab.mit.edu/courses
Why ‘Prosthetics for the Developing World’?

Only 5-15% of amputees in low- and middle-income countries receive a prosthetic device.

A closer look at prosthetics in India...

INTRODUCTION: D-LAB PROSTHETICS

Extreme affordability

Costly

Lack of options
Course Overview

- **Overall goal**: completely immersive design experience

 - **Clinical challenge** defined by a partner organization related to prosthetic, orthotic, or rehabilitative technology

 - Work as part of a team to **Design**, **Prototype** and **Evaluate** a solution
Course Goals

1. Gain understanding of **technical challenges** faced in developing nations
2. Learn about **appropriate prosthetic technologies**
3. Explore how MIT can be involved with **developing world challenges**
4. Learn **hands-on skills**, like CAD and prototyping
5. Understand challenges of **innovation and entrepreneurship** in resource-constrained settings
6. Learn about **design for scale**
COURSE STRUCTURE: DESIGN PROCESS

- Problem Definition
- Background Research
- Mission Statement
- Functional Requirements & Design Parameters
- Strategy to Concept
- Design
- Experimental Evaluation/Validation
Problem Definition

- International partners provide challenges that they face.
Background Research

- Emphasize understanding the **challenge** that the student team is working on

- Suggestions for getting started:
 - Literature search
 - Patents
 - Prior Art
 - Web Search
 - Interviews/shadowing
Mission Statement

- A clear and concise statement about what the team plans to accomplish during the semester.

Clear and concise statement about what the team plans to achieve during the semester

Focuses the team and is a good way to start presentations

Important considerations:
- What problem is the team trying to solve?
- What does the design need to do?
- Who are you innovating for?
- What value are you adding?
Functional Requirements
A list of independent functions that the design must accomplish [What?]

Design Parameters
Independent means to accomplish each functional requirement [How?]

<table>
<thead>
<tr>
<th>Functional Requirements</th>
<th>Tech Specs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Be able to adjust height</td>
<td>1-7 +/- 1 mm</td>
</tr>
<tr>
<td>Accommodate variable cane diameters</td>
<td>25-35 mm</td>
</tr>
<tr>
<td>Accommodate difference in diameters of two canes</td>
<td>+/- 5 mm of each other</td>
</tr>
<tr>
<td>Accommodate gap between canes</td>
<td>1 cm</td>
</tr>
<tr>
<td>Cost effective</td>
<td>< ₹1000 (~$15)</td>
</tr>
<tr>
<td>Lightweight</td>
<td>< 200g</td>
</tr>
<tr>
<td>Strong</td>
<td>Test with ISO 10328 guidelines</td>
</tr>
<tr>
<td>Made from accessible materials</td>
<td>Aluminum, PP, PE</td>
</tr>
<tr>
<td>Waterproof</td>
<td>Yes</td>
</tr>
<tr>
<td>Withstand range of temperatures</td>
<td>30-110° F</td>
</tr>
<tr>
<td>Attach to standard parts</td>
<td>Pyramid adaptor, receiver, pylon</td>
</tr>
</tbody>
</table>

• “Coarse to fine”

• **Strategy**: *broad* way to approach the problem

• **Concept**: *specific* devices that will meet your design goals

- A means to realize chosen concept

- Break up design into modules
 - Determine most critical module; prototype this first

- Design for resource-constrained environments
 - Know your constraints
 - Seize opportunities to be creative

Source: EC.722 Design Project – R. Das, M. Devlin, L. Zimmermann, J. Gamble, J. Kudryashev
Experimental Evaluation/Validation

- Bench-top experiments and/or field testing to determine if the functional requirements have been met.

Source: EC.722 Design Project – A. Flaherty, S. Le, M. Marzoughi, C. Nobuhara, A. Rajagopal
COURSE STATISTICS

Course Enrollment
(n=97 students; 2008-2017)

Student Gender Distribution
(n=97 students; 2008-2017)
COURSE STATISTICS

Student Year Distribution
(n=97 students; 2008-2017)

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>15</td>
</tr>
<tr>
<td>2009</td>
<td>10</td>
</tr>
<tr>
<td>2010</td>
<td>7</td>
</tr>
<tr>
<td>2011</td>
<td>5</td>
</tr>
<tr>
<td>2014</td>
<td>10</td>
</tr>
<tr>
<td>2015</td>
<td>20</td>
</tr>
<tr>
<td>2017</td>
<td>25</td>
</tr>
</tbody>
</table>

Student Year Distribution [Total]
(n=97 students; 2008-2017)

- Year 1: 26%
- Year 2: 26%
- Year 3: 33%
- Year 4: 14%
- Grad: 1%

D-Lab
Student Major Distribution [Total]
(n=97 students; 2008-2017)

- Mechanical Engineering: 65%
- Bio/biomedical Engineering: 12%
- Other Engineering (Electrical, Chemical, Materials): 12%
- Science (Biology, Physics, Chemistry, Neuroscience): 7%
- Business or Social Science: 4%
Speakers from experts in the field:
PARTNERSHIPS

Industry collaboration and sponsorship:

Source: Autodesk Design Academy
[academy.autodesk.com]
PARTNERSHIPS

MIT International Science & Technology Initiatives

JOIN THE WORLD THROUGH MIT-INDIA
DISCOVER INTERNSHIP & RESEARCH OPPORTUNITIES

Source: misti.mit.edu
Project Continuation

• Since 2014, there have been 13 student projects – 8 projects have continued beyond the class
Project Continuation

- Since 2014, there have been 13 student projects – 8 projects have continued beyond the class
 - Field-testing
 - Additional grant money
 - Industry internships
 - Patents
 - Start-up venture

Photo credit: M. Cavuto & M. Chun
Transfemoral Rotator (India)

Key accomplishments:
- Multiple field trials at Jaipur Foot and Mobility India
- 2nd place prize in the 2016 MIT de Florez Competition
- Manuscript in ASME
- Filed a utility patent
- DFM project in current course

Student team: K. Baronov, M. Chun, M. Cavuto, K. Durgin, N. Kelsall, M. Zhou

SmartSocket (Kenya & Ethiopia)

Key accomplishments:
- Field testing with CURE International
- Secured funding from the MIT Undergraduate Giving Campaign (UGC) and Tau Beta Pi
- MIT IDEAS Global Challenge Winner

Student team: K. Sweeney, E. Green, T. Luu, N. Schwarz, K. Swaminathan
Adjustable Socket (Rwanda)

Student team: C. Humure

OUTCOMES: CASE STUDIES

Key accomplishments:
- Preliminary field testing at Mobility India
- Continued project as intern at Autodesk
- Created course on Autodesk Design Academy
- Ozy Genius Award Winner
Conclusion

- Work with international collaborators to define real-world challenges
- Partnerships with industry
- Team project-based learning – design and making as a way of learning
- Human-centered design thinking that is societally, financially, and technologically sensible for intended setting
- 8 of 13 projects continued beyond the course
- Exposure to biomedical design for social impact
Acknowledgements

Instructors/TA’s (past & present)
Matthew McCambridge
David Sengeh
David Hill
Katherine Olesnavage
Murthy Arelekatti
Ken Endo
Todd Farrell
Matthew Furtney
Matthew Cavuto
Matthew Chun
Shriya Srinivasan

On-campus collaborators
MISTI-India (Mala Ghosh & Molly Gallagher)
MISTI-Arab World (David Dolev)
MIT Undergraduate Giving Campaign
MIT Tata Center
MIT IDEAS
MIT Media Lab
Biomechatronics Group (PI: Hugh Herr)
GEAR Lab (PI: Amos Winter)

International collaborators (past & present)
Jaipur Foot Organization [India]
Refugee Open Ware [Jordan]
Mobility India [India]
CURE International [Kenya & Ethiopia]
STAND: The Haiti Project [Haiti]
Transitions [Guatemala]
RiseLegs [India]
Gateway Prosthetics [Kenya]

MIT D-Lab
Libby Hsu
Nancy Adams
Bob Nanes
Jack Whipple
Richard Brewer
Amy Smith
Melissa Mangino
Victor Grau Serrat

Local collaborators (past & present)
Rogerson Prosthetics and Orthotics
A Step Ahead Prosthetics
Continuum Innovation
IDEO
MGH CAMTech

Autodesk
Sunand Bhattacharya
Erica Nwankwo
Mike Alcazaren
Natalia Polikarpova
Thank you! Questions?

Contact: branger@mit.edu | bryanranger.com | @bryan_ranger